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In this work we study from a theoretical point of view microcavities embedding organic materials featuring
vibronic progressions. As already shown in seminal experiments, the presence of vibronic replicas largely
enriches the physics of such systems with the appearance of new polariton dispersion branches. We calculate
the linear optical properties of such microcavities using two distinct models, quantum the first, macroscopic the
latter, which are fully consistent with each another. They are shown to describe the strong-coupling regime in
very good agreement with the available experimental data, using independently determined material
parameters.
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I. INTRODUCTION

The regime of strong light-matter coupling in monolithic
inorganic semiconductor-based microcavities has been inten-
sively studied up to the recent observation of Bose-Einstein
condensation of cavity polaritons.1 The achievement of a
large value for the Rabi splitting is beneficial to the observa-
tion of strong-coupling features even at room temperature
and has motivated the search of novel configurations and
material combinations, e.g., from GaAs to CdTe to GaN or
ZnO based microcavities.

Rather than focusing on inorganic semiconductors, an al-
ternative line of research has considered microcavities based
on organic semiconducting materials2,3 as a viable route to
very large Rabi splitting values. The first experimental proof
of strong coupling in organic-based microcavities has been
performed using disordered mixtures of J aggregates in a
host matrix,4 a system whose optical properties have been
then broadly investigated, both experimentally and
theoretically.5–8 More recently, a new research line has fo-
cused the attention on polycrystalline and crystalline materi-
als. These materials mainly differ from those previously
studied for two features: on one hand vibronic resonances
play a major role in the linear optical properties of the mi-
crocavity, up to the creation of additional polariton disper-
sion relations;9 on the other hand the ordered crystalline
structure allows the observation of a variety of phenomena
arising from the strong optical anisotropy of these
samples.10–12 A new major experimental progress has been
achieved with the growth of single-crystal organic
microcavities,13,14 where the measure of the polarization de-
pendence of the linear optical properties has been possible.
Furthermore, in Refs. 13 and 15 the first photoluminescence
measures for crystalline samples have been reported.

In this paper we focus mainly on the influence of vibronic
replicas on the physics of strongly coupled microcavities.
Motivated by the experimental measures shown in Ref. 9,

we build two general models, quantum the former and
macroscopic the latter, explaining the multiple resonances in
terms of a single electronic transition assisted by vibrational
quanta. Both these models reproduce the experimental
results.16,17 In our analysis we will also take into account
the anisotropic character typical of organic materials and
simulate systems involving an arbitrary number of vibronic
replicas with one molecule per unit cell. A second paper
discussing the photoluminescence properties of such hetero-
structures will follow.18

This paper is organized as follows. In Sec. II the two
models are explained each one with a descriptive example;
the simulations of the experimental results are shown and
discussed. Our conclusions are presented in Sec. III.

II. LINEAR OPTICS

Organic molecules in the solid phase tend to regularly
arrange forming molecular crystals held together by van der
Waals forces with binding energies much weaker than those
due to covalent chemical bonds. In general, the intramolecu-
lar dynamics becomes relevant and the coupling of the elec-
tronic degrees of freedom to those of the nuclear structural
backbone of a molecule cannot be neglected. Therefore we
will use the Franck-Condon model,19 widely adopted in
solid-state physics to link an electronic transition to the
modification in the nuclear configuration. We model a mol-
ecule as a simple two-level system whose ground state and
lowest excited one have slightly different structural configu-
rations. These two electronic levels can be represented as
two adiabatic surfaces with equilibrium configurations dis-
placed by a distance R0 and having different energies. In this
model we assume that one parameter is enough to describe
the changes in the nuclear spatial configurations. The nuclear
states are modeled as one-dimensional harmonic oscillators
of mass M. An optical transition consists of an electronic and
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a vibrational excitation: considering the Born-Oppenheimer
approximation,20 we can factorize the generic vibronic wave
function in an electronic part and a nuclear one. The Franck-
Condon principle states that an electronic transition is most
likely to occur without changes in the positions of the nuclei,
or, to put it better, that the transition dipole moment is pro-
portional to the squared overlap of the vibrational wave func-
tions. The transition probability takes the form

Pa�→b� � ���b�er��a��2���b���a���2, �1�

where �a identifies the ath electronic state while �a� repre-
sent the �th vibrational wave function of the ath electronic
level. Calculating the overlaps at zero temperature we obtain
the transition probabilities from the vibronic ground state,
proportional to the oscillator strengths. They are modulated
by a Poisson distribution,

PG0→E� �
S�

�!
e−S, �2�

where G and E stand for ground and excited states and with

S�� = M�2R0
2/2, �3�

where S is the Huang-Rhys parameter which takes the mean-
ing of the average number of phonons accompanying the
optical transition. At finite temperature, taking into account a
population of the initial state that follows a Boltzmann dis-
tribution, these absorption peaks are modulated by a La-
guerre distribution,21 and if ��	kBT, as it is the case at
room temperature, the previous results are approximately
still valid. From now on the oscillator strength of the transi-
tion will be distributed among the vibronic replicas accord-
ing to the modulation given by the previous equations.

A. Microscopic model

We have built a quantum model to describe light-matter
interaction in microcavities containing anisotropic organic
molecular crystal as resonant material.12 The geometry of the
generic system considered is shown in Fig. 1 where an or-
ganic slab, with a resonant dipole moment �, is embedded
between two mirrors separated by a distance La. Planar mi-
crocavities are formed by facing mirrors so as to quantize the
electromagnetic field along the growth direction, the z axis in
the examples considered, and to confine it on a plane: the
eigenstates are represented by cavity photons. For each in-

plane wave vector there are two possible polarizations, p
�electric field vector parallel to the plane of incidence� and s
�electric field vector perpendicular to the plane of incidence�.
We will consider only one relevant cavity mode energy with
the dispersion relation

��q =
�c
�

�q2 +

�2

Lef f
2 , �4�

where q is the in-plane wave vector, Lef f is the effective
length of the cavity, and 
 is the background dielectric con-
stant. In realistic cases polarization splitting22 and penetra-
tion depth23 should be taken into account, mainly when one
has to deal with dielectric mirrors, but each case should be
analyzed according to mirrors details and parameters.

The optical analysis is performed varying the incident
light wave vector via angle tuning experiment, where the
incident angle, �i, is connected to the in-plane wave vector,
q, by the relation

q =
E�q�
�c

sin �i, �5�

where E�q� is the energy of the incident photons.
Electronic excitations in molecular crystals are Frenkel

excitons and their Hamiltonian can be written, in the Heitler-
London approximation, considering a low exciton density,

Hex = �
j

�
n

�� jbj,n
† bj,n + �

j
�

l
�

n�m
Jjl�m − n�bj,n

† bl,m,

�6�

where bj,n
† and bj,n are, respectively, the composite creation

and annihilation operators of an electronic excitation accom-
panied by j vibronic replicas at the molecule at site n. On
different sites n�m, they commute

�bi,n,bj,m
† 	 = �bi,n,bj,m	 = �bi,n

† ,bj,m
† 	 = 0, �7�

while on the same site they do not have a definite statistics as
the electronic operators �paulions� anticommute, while the
vibrational ones �bosons� commute.

� j takes account of the independent molecule frequency
transition and of the gas to solid molecule frequency
shift3,24,25 and increases linearly in j,

� j = �0 + j�01, �01  �0, �8�

where �01 is the energy associated to the vibronic transition.
The second sum in Eq. �6� takes into account the excitation
transfer between molecules; the interaction parameter repre-
senting dipole-dipole coupling between two molecules at
sites n and m is also effective between states with different
numbers of vibrational replicas �j� l�,

Jjl�m − n� = ��e,j��g,0���g,0��e,l�J̃�m − n� . �9�

The periodic structure of a lattice allows us to diagonalize
the excitonic Hamiltonian defining the operators,

y z

x μ

La

θi

qin

m
irrorm

irr
or

FIG. 1. Sketch of the system geometry: an organic resonant
material of length La, with dipole moment �, is embedded in a
microcavity. The optical properties of such a system are investi-
gated with reflectivity experiments.
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bj,k
† =� 2

M�N + 1��n
sin�kznz�eik·nbj,n

† , �10�

where M is the number of unit cells in the plane, N is the
number of parallel planes, kz is the wave vector in the z
direction, and nz denotes the location of a monolayer on the
z axis. This Hamiltonian, that now takes the form

Hex = �
k

Hexk = �
k

�
j

�
l

Ejl�k�bj,k
† bl,k, �11�

can be easily diagonalized by operators that are linear com-
binations of the bj,k

† ; in the limit of low excitation these op-
erators can be regarded as bosons.3,25 Typically the intermo-
lecular interactions are small and these delocalized states are
almost dispersionless.

The coupling of excitons and cavity photons is described
within the dipole approximation so that the interaction is V
=−� ·E, where � is the dipole moment operator of the or-
ganic material and E is the cavity electric field operator. In
this case we consider only transitions starting from the
ground state without any vibronic replica: the oscillator
strength of the electronic transition is distributed over a few
transitions to the excited state distinguished by the number of
vibrational quanta accompanying the transition. Absorption
processes involving vibronic replicas at the ground state
have a negligible weight at room temperature and will not be
considered. On the other hand these states have a crucial role
in the relaxation dynamics, thus they have to be taken into
account in the study of the photoluminescence.17,18

The Hamiltonian of this system, in the linear coupling
regime, takes the form

H = �
k

Hexk + �

�=s,p
��ka�,k

† a�,k + �
j

�
�=s,p

�gj�kbj,k
† a�,k

+ gj�k
� bj,ka�,k

† �� , �12�

where k is the in-plane wave vector and a�,k
† is the creation

operator of the cavity photon � polarized. Interaction ele-
ments, gj�k=GjkP�, are proportional to the square roots of
the partitioned oscillator strengths, in fact

Gjk = i�4��k

LA

�4M�N + 1�

�
�Sj

j!

e−S

N
, �13�

where L is the spacing between the mirrors and A is the
quantization area; N is a normalization factor taking into
account that we usually consider only a finite number of
resonances. In the dipole approximation the gj�k polarization
dependence �P�� can be calculated with simple geometrical
considerations: considering a generic dipole moment along
the cavity plane, �= ��x ,�y ,0�, and defining the two unit
vectors, n̂ and ê, in directions perpendicular and parallel to
the in-plane wave vector which forms an angle � with the x
axis, the coupling parameters read

gjsk = Gjk� · n̂, gjpk = Gjk�1 −
k2

Q2� · ê , �14�

and replacing the values of the unit vectors

gjsk = Gjk�− �x sin � + �y cos �� ,

gjpk = Gjk�1 −
k2

Q2 ��x cos � + �y sin �� , �15�

where Q=�k2+kz
2 is the total wave vector.

The Hamiltonian built so far can be diagonalized to obtain
the polariton dispersion relations and the relative polariton
operator

Ak
t = Xsk

t as,k + Xpk
t ap,k + �

j

Xjk
t bj,k, �16�

where X’s represent the relative components in the linear
picture and t labels the polariton branch.

The optical properties of the system are investigated cou-
pling these internal modes with the external fields applying
the quasimode formalism.23 Nonideal mirrors allow coupling
between internal eigenstates and the continuum of fields on
both sides with the same in-plane wave vectors and polariza-
tions. Internal eigenstates are derived by means of the
method outlined previously whereas the continuum of exter-
nal fields can be described by the Hamiltonian,

Hr = �
k�
� d�k��kd�,k

† ��k�d�,k��k� , �17�

where d�,k
† is the creation operator of an external mode on the

right side and the same can be done for the left one, defining
the creation operator c�,k

† . The coupling elements can be writ-
ten

V = i�
k�
� d�k�ur��k��a�,kd�,k

† ��k� − d�,k��k�a�,k
† 	

+ i�
�,k
� d�k�ul��k��a�,kc�,k

† ��k� − c�,k��k�a�,k
† 	 ,

�18�

where ur and ul are the right and left coupling parameters
that, in good approximation, are connected23 with the reflec-
tivity Rj of the high-quality mirrors by uj

2���=
�pht

2� =
c�1−Rj�
4��
L

,
with j= l ,r. We assume these coupling parameters as con-
stant in the investigated energy range. The equations of mo-
tion for the external fields and the polariton states can be
solved for each value of the in-plane wave vector, so for a
fixed k they are

d

dt
c���� = − i�c���� + ul�

t

X�
t�At,

d

dt
d���� = − i�d���� + ur�

t

X�
t�At,
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d

dt
At = − i�tA

t − �
�
� d�X�

t �ur���d���� + ul���c����	 ,

�19�

where t identifies the polariton state, �t is the tth polariton
eigenvalue and the cavity-mode operators, a�, have been rep-
resented in terms of the polaritons operators At. We have
included phenomenologically the absorption of the active
medium via damping rates in the exciton replicas frequencies
so that complex excitonic frequencies are considered �� j

ex

→� j
ex− i�exc,j�. Optical parameters can be obtained once a

given input field is specified:12 they are directly correlated
with the photonic components of the polariton modes and
can be expressed in terms of the matrix elements constituted
with these components

��� = �
t

X�
t X�

t�

� − �t
, �20�

where the subscripts stand for the polarization states.
Our optical analysis is polarization dependent so it is also

appropriate for anisotropic systems showing polarization
mixing. With this microscopic model we analyze an example
of an anisotropic material embedded in a microcavity so as
to study the optical properties and to highlight the features of
this model. We consider a 260-nm-thick active material �

=1� whose absorption spectrum is reported in Fig. 2, with a
transition energy of 2.5 eV and vibrational quanta with en-
ergy 0.3 eV, with a Huang-Rhys parameter of 0.8 so to dis-
tinguish various resonances. In addition we consider a ge-
neric anisotropic case with a dipole moment lying on a plane
parallel to the mirrors and forming an angle � /4 with the
plane of incidence. In order to operate in the strong-coupling
regime, we chose a very narrow linewidth for every reso-
nance ��exc=0.05 eV� and highly reflecting mirrors ��pht
=0.03 eV�. Figure 3 shows the s-polarized reflectivity spec-
trum with s-polarized incident light of such a layer �as in the
presently available experimental spectra�. The main features
emphasized by these spectra are the dispersion relation: the
anticrossing behavior of the lowest modes is evident but the
anisotropy brings an additional cavity-photonlike mode that
crosses all the polariton modes causing low reflectivity
points. This phenomenology can be explained considering
that the uniaxial symmetry leaves a free-propagation direc-
tion orthogonal to the dipole vector, this feature disappears in
the isotropic case. An even more interesting peculiarity of

the anisotropy is the polarization mixing shown in Fig. 4,
where the p-polarized transmission from s-polarized incident
light is remarked. The intensity is particularly high on the
resonant energies where the role of the dipole, and thus of
the mixing, is stronger. The intensity of the mixed reflectivity
depends strongly on the angle formed by the dipole with the
incidence plane and disappears in the isotropic case.

B. Macroscopic model

A second approach exploited to compute the optical prop-
erties of the system consists in a macroscopic description of
the microcavity. The starting point is the characterization of a
dielectric function for the crystal slab that relates the electric
displacement field D to the electric field E, inside the mate-
rial, according to the relation Di=� j
ijE j. In the dipole ap-
proximation the generic dielectric tensor, 
ij, has a uniaxial
symmetry and in the coordinate system of the principal axes
can be written in diagonal form as

ε̂ = 
� 0 0

0 
� 0

0 0 
�

� �21�

with a dielectric function, along the resonant axis, of the
form

FIG. 2. Simulated absorption spectrum of a hypothetical bare
260-nm-thick film.

Reflectivity

Energy (eV)

Angle (degree)

FIG. 3. Reflectivity s-polarized spectra with s-polarized incident
light of the material embedded in a high-quality microcavity. This
simulation has been performed with the microscopic model.

Trasmission

Energy (eV)

Angle (degree)

FIG. 4. Transmissivity p-polarized spectra with s-polarized in-
cident light of the material embedded in a high-quality microcavity.
This simulation has been performed with the microscopic model.
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���� = 
� +
4�e2

m0
�

j

Res
f j

�� j
2 − �2 − 2i��exc,j�

, �22�

where 
� accounts for the isotropic background, f j are the
oscillator strengths per unit volume distributed among the
vibronic replicas as above, � j are the resonant energies, �exc,j
is the linewidth of each resonance, and the sum is over all the
relevant resonances. With an arbitrary rotation a generic di-
rection of the dipole moment can be obtained.

The optical analysis can be carried out solving Maxwell’s
equations for the given system with adequate boundary con-
ditions. In order to set up a flexible algorithm, we use a
transfer-matrix approach. The traditional approach for isotro-
pic materials involves 2�2 matrices, but we adopt a 4�4
matrix method,26,27 valid for layered anisotropic systems,
which considers the electromagnetic field in his polarization
modes, p and s. Considering an incident light with wave
vector ka, the behavior of the electromagnetic wave inside
each stratified medium can be described by a matrix that
contains information about the ratio between incident, re-
flected, and transmitted wave amplitudes. In details, denoting
with As, Ap, Bs, Bp, Cs, and Cp the complex amplitudes of,
respectively, incident, reflected, and transmitted waves �the
subscript denotes the polarization�, we can define a 4�4
transfer matrix as


As

Bs

Ap

Bp

� =
T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

�
Cs

0

Cp

0
� , �23�

where we have assumed there are no back traveling waves
from the exit medium. If di is the thickness of the ith layer,
an inverted partial transfer matrix, Tip, can be defined, and
the total transfer matrix takes the form

T = La
−1�

i=1

N

Tip�− di�L f , �24�

where La and L f are the input and exit matrices that connect
the p and s modes inside the stratified medium with those in
the input and exit media. For further details on these matrices
we refer to the Schubert’s paper.26 Eight transmission and
reflection coefficients can be defined calculating the ratios
between outgoing amplitudes and incident ones, and they can
be expressed in terms of the matrix T, such as, for instance,
the s-polarized reflection coefficient with s-polarized inci-
dent light

rss = �Bs

As
�

Ap=0
=

T21T33 − T23T31

T11T33 − T13T31
. �25�

According to generalized ellipsometry the complex reflec-
tance ratio can be defined

� = tan �ei� = �Bp

Ap
��Bs

As
�−1

�26�

and can be expressed as a function of T and of the incident
amplitudes. The basis of this approach is to define three lin-

ear independent normalized reflection matrix elements so
that the optical parameters can be directly calculated.

The calculation of the transfer matrix for anisotropic slabs
moves from the first-order Maxwell’s equations that can be
written in matricial form

�

�z
��z� = ik0��z���z� , �27�

where

��z� = �Ex,Ey,Hx,Hy�T�z�, k0 =
�

c
,

the 4�4 � matrix depends on the dielectric tensor and on
the in-plane wave vectors components. If the medium is ho-
mogeneous � does not depend on z and we can formally
write

��z + d� = ei�/c�d��z� = Tp��z� , �28�

where all the multiple reflections are considered in a self-
consistent way. The partial transfer matrix Tp can be deter-
mined in function of � applying the theorem of
Cayley-Hamilton.28

It will now be investigated an example completely analo-
gous to that of the previous section to compare the two mod-
els. The resonant material has been embedded between two
highly reflecting distributed Bragg reflectors �DBRs� with
two pairs of layers with refractive indices n1=1.3 and n2
=3.6. The optical results given by this macroscopic analysis
are completely consistent with the ones given by the quan-
tum model. In Fig. 5 is shown the absorption spectra with
s-polarized incident light: the several polariton modes are
clearly evident as well as the strong absorptions close the
anticrossing regions. This means that the cavity mode
strongly couples to the resonance with no phonon as well as
to the first phonon-assisted replicas. Since the absorption is a
feature related to the resonance, and, in particular, to its line-
width, in this spectrum there is no mark of the noncoupled
direction.

The two models presented so far are completely consis-
tent, as it happens in absence of vibronic replicas.23 An evi-
dence of this agreement emerges from the comparison of the
transmission spectra of Figs. 4 and 6 obtained with the two
models. Clear analogies are shown by the two spectra for

Absorption

Energy (eV)

Angle (degree)

FIG. 5. Absorbtion spectra with s-polarized incident light of the
material embedded in a high-quality microcavity. This simulation
has been performed with the macroscopic model.
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what concern the amplitudes and the positions of the reso-
nances. In both the figures it is evident the polarization mix-
ing arising for values of the cavity photon resonating with
the excitonic replicas. This behavior appears with a group of
peaks for every excitonic transition �four of them are evident
in Figs. 4 and 6� and the amplitude of the mixed transmission
appreciably decreases at large angles in both the spectra.
Some minor discrepancies arise from the simulations, they
are mainly due to the different treatment of the photonic part
of the problem. First of all the characterization of the mir-
rors: in both systems they are highly reflecting but while they
are realistic DBRs in the macroscopic case, in the micro-
scopic one the coupling to the external modes is directly
computed from the value of the reflectivity. Another relevant
phenomenon is the polarization splitting that is automatically
accounted in the transfer-matrix method but has to be in-
serted by hand in the quantum case.

C. Simulation and results

The last part of this analysis concerns the simulation of
the experimental results with the models explained so far and
the comparison of the parameters with those obtained by
Holmes and Forrest9 reproducing the experimental disper-
sion relations. Since the absorbance spectrum of the bare
3,4,7,8 napthalenetetracarboxylic dianhydride �NTCDA� film
�Fig. 7�a�	 shows two different and narrow peaks, they fitted
the reflectivity spectra with a simple three coupled oscillator

model, coupling the cavity photon with two nondispersive
exciton modes following

�Ep V1 V2

V1 Eex1 0

V2 0 Eex2
�, Ep = E0�1 −

sin2 �

nef f
2 �−1/2

, �29�

where the two uncoupled transition energies, Eex1 and Eex2,
appear. V1 and V2 are the two interaction potentials, E0 is the
cutoff energy, � is the incident angle, and nef f is the effective
refractive index. They adjusted four free parameters �V1, V2,
E0, and nef f� to obtain a best fit to the experimental data.

In our simulation we start from the macroscopic model
because it allows to reproduce exactly the experimental con-
figuration without additional fitting parameters linked to mir-
rors reflectivity and polarization splitting. Since the investi-
gated material is polycrystalline NTCDA, consisting of
randomly oriented crystallites, we have adopted isotropic al-
gorithms: a diagonal isotropic dielectric tensor in the macro-
scopic model, and a simpler three coupled oscillator model
in the microscopic case with an angle-independent interac-
tion and a single cavity mode. In this isotropic case the quan-
tum model is similar to the model used by Holmes and For-
rest to fit the experimental data. The simulation layout is
arranged in order to have no additional free parameters to fit
the strong-coupling regime, in fact we only use parameters
obtained from the bare-material properties and from the ex-
perimental dielectric configuration. The first step is the set-
ting of an appropriate dielectric tensor reproducing the
known absorbance spectra of a bare 50-nm-thick slab of
NTCDA with the transfer-matrix algorithm, so as to evaluate
excitonic and phononic energies, the Huang-Rhys parameter
and the oscillator strength. The experimental absorbance
spectrum and the simulated one are shown in Fig. 7�a�. This
isotropic dielectric tensor is then used to calculate the optical
reflection coefficients of the realistic system embedded in an
asymmetrical microcavity �Fig. 7�b�	. This kind of micro-
cavities, constituted of a dielectric and a metallic mirror are
typically adopted for organic materials. The optical analysis
has been performed on thermally evaporated polycrystalline
NTCDA with thicknesses of 40 and 60 nm. In the simula-
tions the mirrors have been reproduced according to tabu-
lated data:29 a DBR with eight pairs of alternating isotropic
layers, constituted of SiO2 �n�1.46� and SiNx �n�2�, de-
posited on a macroscopic quartz substrate and a 200-nm-
thick aluminum mirror. A reflectivity analysis with
p-polarized incident light on the quartz substrate has been
performed on these sample via angle tuning experiments:
also the simulations accounts for the relation between inci-
dent angle and in-plane wave vector to have analogous
angle-dependent reflectivity data. The output of the first
simulation are the reflectivity spectra reported in Fig. 8, this
is done in analogy with the experimental results �also re-
ported in Fig. 8�. From this example it is clear that the simu-
lated reflectivity spectra are in very good agreement with
experimental ones both for what concerns the DBR side-
bands and for the polariton states �pointed by arrows� that are
well reproduced in their energy and in their linewidth. The

Angle (degree)

Energy (eV)

Trasmission

FIG. 6. Transmissivity p-polarized spectra with s-polarized in-
cident light of the material embedded in a high-quality microcavity.
This simulation has been performed with the macroscopic model.

Quartz

NTCDA

AL

θθ

DBR

b)a)

A
bs
or
ba
nc
e

Energy [eV]
0

0.2
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0.25

0.5

0.75

2 2.5 3 3.5 4 4.5

2 2.5 3 3.5 4 4.5

FIG. 7. �a� Simulated absorbance of a bare 50-nm-thick
NTCDA slab. In the inset the experimental spectrum adapted from
Ref. 9. �b� Experimental setup reproduced in the simulations.
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consistence that appears from the comparison of the polari-
tons linewidths entails a correct description of the cavity mir-
rors, and hence of the photonic component.

From the minima of these spectra the polaritons disper-
sion relations can be obtained, as shown in Fig. 9. From this
figure emerges that the cavity photon strongly couples to the
two first vibronic transitions, as observed experimentally. For
what concerns the 60-nm-thick slab, the main mismatch of
this simulation with the data appears in the lower polariton,
whose energy is a bit too high with respect to the experimen-
tal results, and in the upper polariton at large energies, where
the photonic character is too pronounced. This feature is also
more evident in the 40 nm case, where the predicted upper
polariton at large angles is too dispersive. In both cases the
explanation could be that the tabulated value used for the
refractive index30 is not accurate or appropriate for this case.
As a matter of fact, Holmes and Forrest for their fit adjusted
the refractive index as shown in Table I. In the last step of

the simulation the optical reflectivity spectra obtained with
the macroscopic model are reproduced with the correspond-
ing microscopic approach to be able to compare the param-
eters with that obtained from the experimenters fit: this com-
parison is summarized in Table I.

It can be seen that the main mismatches are in the cou-
pling parameter V1 and in the cavity photon energy E0, larger
than the experimental one; this stresses and confirms the dif-
ferences found in the 60 nm case. All our results are obtained
starting only from bare materials features and experimental
configuration data, without adjusting free parameters in the
strong-coupling regime.

This procedure is also suitable for the recent results ob-
tained with single-crystal organic microcavities.13 The main
modification would be the adoption of an appropriate biaxial
dielectric function.

III. CONCLUSIONS

We have developed two consistent models for the study of
light-matter interaction in microcavities containing organic
materials with vibronic replicas. The results of these models
generalize those previously obtained without vibronic
progressions.2,6–8,11,12,27 Moreover the dispersion relations
and the optical spectra of the first experimental results9 with
coupling to different vibronic replicas are well reproduced
without using additional free parameters to fit the strong-
coupling regime. The most interesting behaviors emerging
from the simulations are linked to the anisotropy of the sys-

FIG. 8. Theoretical �upper� and experimental �lower�, adapted
from Ref. 9, reflectivity spectra for a 60-nm-thick slab of NTCDA
in microcavity, obtained with p-polarized incident light. Spectra are
plotted with an angular step of 8° and they are shifted for clarity.

FIG. 9. �Color online� Reflectivity spectra �linear color scale� vs angle and energy. These plot show the dispersion relations obtained from
reflectivity spectra for the 40-nm-thick �left� and 60-nm-thick �right� NTCDA slabs. Theoretical dispersion curves are the minima of darker
areas pointed by arrows while experimental ones are shown as spots. At lower and higher energies are evident DBR sidebands.

TABLE I. Comparison of the parameters of the three coupled
oscillator models �cf. Eq. �29�	 fitted directly to experimental data
�Ref. 9� and obtained from our simulations.

Thickness

40 nm 60 nm

Expt. Sim. Expt. Sim.

E0 �eV� 2.88�0.05 3.05 2.70�0.05 2.82

n 1.6 1.61 1.8 1.61

V1 �meV� 140�10 110 180�10 160

V2 �meV� 50�10 50 60�10 70
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tem, one of the main differences with respect to inorganic
semiconductor microcavities. Therefore these models could
be a powerful instrument of calculation and inspection of the
optical properties of organic-based microcavity systems,
mainly in the light of the recent achievements realized with
single-crystal microcavities.10,13 A further study on the pho-
toluminescence of such microcavities will be published
soon.18
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